IOT & CYBERSECURITY

CYBERSECURITY OF THE INTERNET OF THINGS

ES - CYBS - CYBERSECURITY OF THE IOT ESM/SR/2024

COURSE OBJECTIVE

- Associate IoT characteristics with vulnerabilities
- Understand the impact and need of security in the IoT
- Knowledge of security methods

ES - CYBS - CYBERSECURITY OF THE IOT ESM/SR/2024

PLAN

- I. Context of the IoT
- 2. Characteristics and challenges
- 3. Perceived threats and exploitation
- 4. Defensive methodologies
- 5. Practical

ES - CYBS - CYBERSECURITY OF THE IOT ESM/SR/2024

I. CONTEXT OF THE IOT

THE INTERNET OF THINGS

Smart Energy

Wearable Healthcare

Smart Homes

Intelligent Transport

Military

CRITICAL INFRASTRUCTURES

SITUATIONS

Smart Agriculture

- Devices deployed in fields
 - Limited access to power, network, etc
- Low to high priority tasks
 - Humidity detection, auto irrigation, self-driving tractors, etc.
- Important data sharing and integration
 - GPS positioning for self-driving tractors
 - Irrigation activation upon low humidity

Healthcare

- Devices deployed on people
 - Large mobility probability, strong but infrequent network
- Generally high priority tasks
 - Glucose regulation, heart observation and alert, etc.
- Confidential data sharing
 - Patient medical feedback
 - Integration with hospital systems

MULTI AREA IMPACT

- Consequences not limited to device
 - Repercussions on other systems
- More and more use in Critical Infrastructures
 - Consequences impacting human life!

IOT SECURITY REQUIREMENTS

- Three key abilities
- Learn
 - Overview and observation
- Segment
 - Segregate devices based upon risks
- Protect
 - Monitoring, inspection and actions

II. CHARACTERISTICS AND CHALLENGES

SITUATION

- Living room with various equipment
 - Smart TV, laptop, tablets, smart phones etc.
- Home Wi-Fi network with password for all devices
- Window at the back with smart opening feature for fresh air
- Electric radiator on smart plug
- Smart thermometer
 - Heating regulated via thermometer and user input
- → Where is the vulnerability?

SITUATION

- Living room with various equipment
 - Smart TV, laptop, tablets, smart phones etc.
- Home Wi-Fi network with password for all devices
- Window at the back with smart opening feature for fresh air
- Electric radiator on smart plug
- Smart thermometer
 - Heating regulated via thermometer and user input
- → Where is the vulnerability?

... BUT WHY?

- Lopsided security interest
 - More attention on more "important" systems than others
- Evident weaknesses → reinforced protection
 - Doors, windows on ground floor, etc.
- Smaller devices generally forgotten
 - Very common → not changing passwords

- Smart plug turned on by hacker → room heats up
- 2. Thermometer detects heat and tries to turn of plug
- 3. Plug ignores commands and keeps heating
- Heat reaches extreme levels → thermometer opens window for fresh air and to cool down room
- 5. House is now accessible

SECURITY CHALLENGES

- Attack surface constantly expanding
 - More devices online → more targets
- More importance to security aspects
 - Availability, integrity and confidentiality
- IoT taking critical positions in companies
 - Not only weaknesses but also potential threats

Normal security methods not always possible

→ Device limitations

DEVICE SPECIFICATIONS

- IoT devices possess limitations
 - Energy
 - Storage
 - Computation
 - Network capabilities
- "Normal" security methods not always applicable
 - Ex:Anti-virus not possible

Chipset	ESP32-Wroom-32
СРИ	240Mhz dual-core
RAM	512kb SRAM
Storage	4MB external flash
Power	Battery
Networking	802.11 b/g/n Wi-Fi® Bluetooth 4.2 / Bluetooth Low Energy (BLE)

Web & Mobile Application Cloud Communications Gateways / Smart Edge Devices IoT Sensors / Actuators

IoT Characteristics

- I Closed / open platforms
- Variable policies
- I High data volume handling
- Public / private / hybric doud deployment
- I 2G, 3G, LTE, 5G
- I DSL, Fibre, LPWAN
- I Wi-Fi, Bluetooth
- I MQTT, IP, ZigBee, Mesh RF, Wi-Fi etc
- 1 Variable communications protocols
- I Time-sensitive data analysis
- Limited power
- I Low bandwidth
- Constrained capabilities
- 1 Sensitive data: video, audio, location, personal information
- I Technical data: environmental measurement, uptime reports

Potential Security Weakness & Targets

- I Code
- Lack of penetration testing
- Weak User / Third Party Authentication
- Code
- Policy management
- I Insecure communications
- Policy management
- I Denial-of-service
- No / insecure updates
- I Poor hardware design
- I Design faults
- Software / firmware implementation faults
- I Inability to update
- I Users
- I Policy management
- Data storage

Source: Juniper Research

III. PERCEIVED THREATS AND EXPLOITATION

Interdependence

- Functioning in tandem with other devices (smart home applications)
- Ex → smart light sensor → turn lights on/off

Diversity

- Difference in hardware (bulbs, plugs, switches, etc)
- Higher diversity → higher change of vulnerabilities

Constrained

- Hardware limitations (energy, computation, communication, etc.)
- Dependant on manufacturer / application / use case

Myriad

- Easy to create / deploy in large quantities → increased network complexity
- More devices \rightarrow higher diversity \rightarrow higher risk of compromise

Unattended

- Deployment in remote / inaccessible areas
- Autonomous functionality, intercommunication, no human interaction

Privacy

- Capture and process large quantities of personal data (wearable healthcare)
- Can be exploited → must protect device storage / exchanges

Mobile

- Wearable devices → high mobility → adapt to dynamic environmental changes
- Network jumping / communication with multiple devices

Ubiquitous

- Increased presence of IoT devices → increased risk of security incidents
- Human interactions important → "The error is generally found between the chair and the keyboard" → Human error a contributing factor

MULTIPLE ISSUES ...

- "Normal" security methods not always applicable
- Limitations in security methods due to device / network characteristics
- Multiple problems to overcome

Weak Authentication & Authorisation	
Lack of Encryption	
Firmware and Software Vulnerabilities	
Insecure communications & channels	
Difficulties in patching / updating	
Lack of testing	
Bad management	
Poor hardware design	
Users	
Storage	

VULNERABILITIES WITH DATA SECURITY

Weak authentication and authorisation

- Insufficient authentication / authorisation practices
- Use of default passwords
 - Often forgotten to change ...
 - Can be exploited to access network
- Rogue devices can be used to steal data

Lack of encryption

- Network traffic generally left unencrypted
 - Confidential / personal data vulnerable
 - Threats include malware / ransomware
- Even important devices!
 - Medical imaging / patient monitoring / security cameras / printers ...

Insecure communication protocols and channels

- Use on generic network
 - Shared with normal devices.
 - Attacks can spread much easier
- Data can be intercepted due to lack of segmentation
 - Use of unprotected Bluetooth (automotive industry)
 - Exploitation of HTTP / APIs

VULNERABILITIES WITH SOFT OR HARDWARE

Firmware and software vulnerabilities

- Limited development and testing of secure firmware
- Devices vulnerable to most rudimentary forms of attack
 - Firmware / software / third-party apps
- Network environment comprised by vulnerable web apps / software for IoT devices

Difficulties in patching and updating devices

- Focus not on building security into devices
- Devices not designed for regular updates
- Cannot ensure secure upgrades
 - Firmware update / patches / dynamic testing

Poor hardware design

- No in-depth testing or study of hardware
 - Oversight of design flaws / lack of embedded security systems
 - Insufficient storage
- Use of out of data legacy systems
- Un secured open-source components
 - Easily comprisable

HUMAN RELATED ISSUES

Lack of testing

- IoT system testing overlooked
- Interest generally on "important" servers
 - Web / database / cloud storage
- Generally, forget potential weak points
 - Missed vulnerabilities

Bad management

- Generally overlooking IoT constraints and characteristics
- Considered "low importance"
- Pour money into large scale systems
 - Servers, etc.
- Lack of sufficient finances / manpower

Users

- Insufficient training
- Incorrect use cause of many attacks
 - Miss-configuration / victim of phishing
- Sometimes ego gets in way
 - "I know more than you" ...

THREATS

- These vulnerabilities leave way for multiple threats
- Too many to count ...
- Important role of security professionals
 - Use of taxonomies / threat models
 - ENISA → https://www.enisa.europa.eu/topics/cyber-threats/threats-and-trends

Firmware exploits

Credentia-based attacks

On-path attacks (mitm)

Physical hardware-based attacks

Network-based attacks (routing)

SOFTWARE AND IMPLEMENTATION

Firmware exploits

- Not many protections in place for device firmware
 - MicroPython on Pi Pico
- Presence of vulnerabilities to exploit
- Can update / replace firmware with compromised version

Credential-based

- Use of default usernames / passwords
 - Generally insecure or shared (shown previously)

- Default credentials known
- Possible, to "guess" or force authentication

On-path — Man-in-the-Middle

- Positioning of attacker between trusted parties
 - IoT camera → attacker → cloud server
- Intercept communications
- No encryption → no problem
- Possible to change data, impact services

DEVICE AND COMMUNICATION BASED

Physcal hardware-based

- Many devices placed in public / accessible areas
 - Security cameras / stop lights / fire alarms ...
- Sometimes also in remote on protected areas
 - Fields / military observation zones
- Physical access to hardware → steal data / gain control
- Also possible to extract encryption keys, when used

Network-based

- Devices exchange data using multiple protocols
 - Many open source and unprotected
 - LoRa / Wi-Fi / etc
- No physical access needed to device
- Eavesdropping on communications for information
- Can cause targeted or general communications blackout

POSSIBLE TO EXPLOIT COMPROMISED DEVICES

- Devices compromised can be used for attacks
 - Principal of Bot-Nets
- Collection of infected / compromised devices to perform malicious actions
 - Can be zombies → alive but dead (seemingly normal operations)

General principal of DDoS

IV. DEFENSIVE METHODOLOGIES

ADAPTABLE DEFENCES

- Defences must correspond to a vulnerability
 - Possibly a principal \rightarrow secure communications
- Must also take into account device specifications
 - Intrusion Detection System for Windows
 - Not possible on IoT → too heavy

Software and firmware updates	
Credential Security	
Device authentication	
Encryption	
Deactivating unneeded features	
DNS filtering	

DEVICE SYSTEMS AND FUNCTIONALITIES

Software and firmware updates

- Same principal as Windows / Linux
 - Regular software updates
 - Security updates important to perform, whatever the device
- Updates need to be tailored to device
 - Large update over network not recommended
 - Use of Over The Air (OTA)
- If device cannot be updated → removed / taken offline

Deactivating unneeded functionalities

- Devices come with many different features
 - Good for diversity and options
 - Bad when not all needed
- Unused featured must be deactivated
 - Closing unused ports / stopping unused software

- More systems running → more targets
- If not used → won't easily see potential attack

IDENTITY VALIDATION

Credential security

- Devices sometimes possess admin access
 - Used for remote configuration and deployment
- Credentials updated BEFORE deployment
- General practice → long complex passwords (as seen previously)
- No reused credentials → unique passwords
 - Use of password manager

Device authentication

- Devices talk to each other to relay information
 - Light sensor → bulb / Thermometer → heating
 - Sensor → cloud server, etc.
- All devices need to confirm their identity
- No device should interact with others UNLESS authorised
- Use of certificates → TSL (Transport Layer Security)

ENCRYPTION AND FILTERING

Encryption

- Data exchanges are vulnerable to attackers
- Protect the data using different Encryption methods :
 - Encoding → simple reversable data translation via algorithm
 - A becomes B : Hello → Ifmmp
 - Symmetric encryption → Single key for encryption and decryption
 - Fast but lacking in security
 - Asymmetric encryption → Dual keys, one for encryption and one for decryption
 - Computationally heavy but stronger

DNS filtering

- Communications on internet utilise IP addresses
 - 192.168.4.1 \rightarrow server Pi Pco in practical work 1
- Difficult to remember
 - IPv4 \rightarrow 2³² addresses / IPv6 \rightarrow 2¹²⁸ addresses
 - Use of URLs as shorthand
- IP → URL resolution by DNS (Domain Name Server)
- Use DNS to block and filter only needed websites
 - Avoid reaching out to attacker domain

V. PRACTICAL

YOUR TIME TO SHINE ... AGAIN

CONTEXT

- Take on the role of security officers
- Maintaining a Chat system
- System functions → possesses weaknesses
- Identify them and propose solutions
- Reinforce 2 pillars of security
 - Confidentiality | Integrity
- Study another notion of importance → Authentication

- Working on data security
- Studying the differences between four data transformation algorithms
 - Encoding
 - Symmetric Encryption
 - Asymmetric Encryption
 - Hashing

OBJECTIVES

- Information available on Moodle
 - Source code available as well → Pico W
- Collaboration is key
- Propose solutions and study limits
 - Relation to what has been shown during the course
- Evaluation on report → must be submitted before the end