IOT & CYBERSECURITY

THE INTERNET OF THINGS

COURSE OBJECTIVE

- Understand the concept of the Internet of Things
- Able to identify limitations and advantages of IoT devices
- Aware of the importance of connected "things"

PLAN

- I. IoT concepts and market
- 2. Challenges and fundamentals
- 3. IoT architecture and systems
- 4. Technological solutions
- 5. Practical

I. IOT CONCEPTS AND MARKET

WHAT IS THE IOT?

- IoT → Internet of Things
 - Term coined in 1999 by Kevin Ashton Describing RFID chips
 - Meaning "Internet connected to the physical world via ubiquitous sensors"
- Cisco's estimation \rightarrow 2008 2009
 - More "things or objects" connected to the internet than people

Source: esferize, "How has the Internet evolved"

MULTIPLE DEFINITIONS

- ITU \rightarrow "Global infrastructure for the information society enabling advanced services by interconnecting things based upon existing and evolving, interoperable information and communication technologies"
 - ITU-T Y.2060 2012
- IETF \rightarrow "Network of physical objects or "things" embedded with electronics, software, sensors, actuators, and connectivity to enable objects to exchange data with the manufacturer, operator, and/or other connected devices"
- ISO/IEC → "An infrastructure of interconnected objects, people, systems and information resources together with intelligent services to allow them to process information of the physical and the virtual world and react"
 - ISO/IEC |TC | 2014

FROM MANTO MACHINE

- Moving away from human control
 - \blacksquare **H2M** \rightarrow Human to Machine
- Standard operating method for IT devices
- Human input necessary for operations
 - Computers, Laptops, ...
- Limited decision-based capabilities

- Machine interactions
 - \blacksquare M2M \rightarrow Machine to Machine
- Next stage in IT evolution
- No human input at all
 - Traffic control, robotics, ...
- Autonomous decision capabilities
- Next stage ... M2H?

MULTITUDE OF DOMAINS

Smart Energy

Wearable Healthcare

Smart Homes

Intelligent Transport

Military

ORIGINS

1982 – Coke Machine

- Carnegie Mellon University Pennsylvania
- Inform admins when out of cans
- Connected to stock lights \rightarrow stays on = empty
- Allows quick restocking
- Reduces unnecessary visits

1991 – Trojan Room coffee pot

- University of Cambridge
- Camera setup informing all users of coffee level
- Avoid disappointment of finding empty machine
- → evolved to first webcam in 1993

ORIGINS

1995 – Telegarden

- University of Southern Carolina
- Telerobotic community garden
- Mixing agriculture, art and the Internet
- Allowed web users to view and interact
- Multiple interactions possible
 - Planting seedlings, water plants, monitor growth, ...
- Over 9000 members in first year!

ESTIMATED MARKET GROWTH

Source: Medium, "Pros and Cons of Telecommunication and Working", $30^{\rm th}$ January 2017

MARKET SHARE

Global Internet of Things (IoT) Market Share, By End Use Industry, 2022

www.fortunebusinessinsights.com

IOT VOLUME

IOT REVENUE

IOT IN 2023

II. CHALLENGES AND FUNDAMENTALS

MAIN CONCEPT

- Devices whose primary functionality DOESN'T require Internet connectivity
- Internet provides extra functionalities to device and operators (professional and personal)

ES - CYBS - IOT

BEFORE THE IOT ...

... NOW

ES - CYBS - IOT

ESM/SR/2024

FUNDAMENTALS

- Retrieve information from physical world
 - Sensors → 1
- Action on physical world
 - Open doors →
 - Start / heat a vehicle →

 The information retrieved/ sent can originate from/travel to a user or other connected devices

COMMUNICATION

- More devices → difficulties communicating
- Not possible to wire everything

- Open to more large-scale inter-connected systems
 - Ex: Forest fire detection

Multiple technologies exist

Wi Fi

6LoWPAN

CHALLENGES

Interoperability

- Multiple technologies → not all compatible
- Fragmented standards
 - Low value but higher costs
- → Framework and standard convergence needed

Scalability

- Large quantities of devices → single network
- Data overload
 - Powerful analytics and large cloud storage
- → Scalable storage and computation systems

Security vulnerabilities

Large "attack surface" → Chapter 3

III. IOT ARCHITECTURE AND SYSTEMS

3-LAYER ARCHITECTURE

- Architecture evolves from system to system
- Most common is 3-layers
 - Perception Layer: Physical layer, interact with the environment
 - Sensors, actuators, ...
 - Network Layer: Collects, transports and processes data
 - Application Layer: User oriented, providing applications and services

Application Layer

Network Layer

Perception Layer

4-LAYER ARCHITECTURE

Data processing put into own layer

Application Layer

Information Processing Layer

Network Layer

Perception Layer

Source: ITU, "IoT Standards, Part I: IoT Technology and Architecture", September 2018

IOT REFERENCE MODEL

ES - CYBS - IOT

ESM/SR/2024

COMPONENTS

- Multi-layer approach
- Four general elements

ENVIRONMENTAL INTERACTION

Sensors

- Detect an event or external parameter
 - Motion in area.
 - Temperature, humidity
- Small sized, cheap and low power consumption

Convert physical notion into electrical current

Actuators

- Act upon the environment itself
 - Influence status of surrounding area
 - Ex: speaker ...
- Larger than sensors and more power hungry

 Converts electrical current into physical movement / mechanical energy

SENSOR AND ACTUATOR EXAMPLES

Source: DZone, "Type of Sensors and Actuators in IoT", 21st July 2022

GATEWAY TO ANOTHER WORLD

- Bridge between two networks
 - IoT Internet
- Combination of hardware and software
- Collects data from sensors before transmitting across internet
 - Can perform local processing

NETWORK ARCHITECTURE

IOT PLATFORMS

- Set of services for IoT data
 - Collection
 - Storage
 - Correlation
 - Analysis
 - Exploitation
- Cloud-based computing solutions

Source: ITU, "IoT Standards, Part I: IoT Technology and Architecture", September 2018

CLOUD COMPUTING

- Storing and retrieving of data over the internet
- Significant evolution for IoT solutions
- Two implementation possibilities:
 - Edge Computing data processing is performed close to the source
 - Sensor / Gateway
 - Fog Computing decentralised computation between cloud and edge
 - Distributed servers

IOT PLATFORMS IN 2021

IV. TECHNOLOGICAL SOLUTIONS

GENERAL CHARACTERISTICS

Interaction between the physical world and IT networks

GENERAL CHARACTERISTICS

Interaction between the physical world and IT networks

GENERAL QUESTIONS

- Choosing a platform depends on the objective and intended use
- What data analysis is needed on the device ? → Computing power
- What needs to be stored on the device → Memory
- What interactions do I need with the world → Sensors / Actuators
- What use do I need and what power solution do I want → Autonomie
- What communication do I need and in what form → Standard or dedicated protocols, wired / wireless, crypted traffic
- How many devices do I need and what level of reliability do I want → Cost

TECHNOLOGICAL REVOLUTION

- Arrival of easy to access low-cost solutions
- Two main solutions
- Systems build around embedded OS
 - Advantages Open, powerful, multiple programming languages
 - Disadvantages Somewhat complex to use, long time to use, average reaction times, relatively high costs, more difficult to interface with other solutions
- Ex: Raspberry PI, Raspberry PI Zero

- Dedicated compact systems with proprietary software
 - Advantages Very reactive, very low cost, more robust, easy interfacing, quick to use
 - Disadvantages Less powerful, limited programming languages, lot less flexibility with software
- Ex: Arduino, ESP8266, ESP32, Raspberry Pl Pico

EXAMPLES

Arduino UNO Rev 3 ≈ 25€

Raspberry Pi 5 ≈ 70€

EVEN CHEAPER EXAMPLES ...

Raspberry Pi Zero ≈ 15€

Espressif ESP 8266 ≈ 2€

RASPBERRY PI 5

Chipset	Broadcom BCM2712 SoC	
CPU	2.4GHz quad-core 64-bit Arm Cortex-A76 CPU	
RAM	4GB / 8GB 32-bit LPDDR4X	
Storage	MicroSD card	
Connections	2 × USB 3.0 ports, supporting simultaneous 5Gbps operation 2 × USB 2.0 ports 2 × 4-lane MIPI camera/display transceivers PCle 2.0 x1 interface for fast peripherals Raspberry Pi standard 40-pin GPIO header	
Power	600mA to 3A @ 5V	
Networking	Dual-band 802. I I ac Wi-Fi® Bluetooth 5.0 / Bluetooth Low Energy (BLE) Gigabit Ethernet, with PoE+ support	

RASPBERRY PI 5

GPIO Pinout – General Purpose Input Output

RASPBERRY PI 5

Powered by Raspberry Pi OS

NODEMCU – ESP32

Chipset	ESP32-Wroom-32	
CPU	240Mhz dual-core Tensilica LX6	
RAM	512kb SRAM	
Storage	4MB external flash	
Connection s	SPI, I2C, I2S, Can, Uart 34-pin GPIO header	
Power	$80 mA$ to $600 mA$ @ $3.3 V$ via GPIO – down to $10~\mu A$ in deep sleep Can be powered by USB	
Networking	802.11 b/g/n Wi-Fi® Bluetooth 4.2 / Bluetooth Low Energy (BLE)	

NODEMCU – ESP32

RASPBERRY PI 5 VS NODEMCU – ESP32

	Raspberry Pi 5	NodeMCU – ESP32
Chipset	Broadcom BCM2712 SoC	ESP32-Wroom-32
СРИ	2.4GHz quad-core 64-bit Arm Cortex-A76 CPU	240Mhz dual-core Tensilica LX6
RAM	4GB / 8GB 32-bit LPDDR4X	512kb SRAM
Storage	MicroSD card	4MB external flash
Connections	2 × USB 3.0 ports, supporting simultaneous 5Gbps operation 2 × USB 2.0 ports 2 × 4-lane MIPI camera/display transceivers PCle 2.0 x1 interface for fast peripherals Raspberry Pi standard 40-pin GPIO header	SPI, I2C, I2S, Can, Uart 34-pin GPIO header
Power	600mA to 3A @ 5V	80mA to 600mA @ 3.3V via GPIO – down to 10 μA in deep sleep Can be powered by USB
Networking	Dual-band 802. I I ac Wi-Fi® Bluetooth 5.0 / Bluetooth Low Energy (BLE) Gigabit Ethernet, with PoE+ support	802.11 b/g/n Wi-Fi® Bluetooth 4.2 / Bluetooth Low Energy (BLE)

V. PRACTICAL

YOUR TIME TO SHINE

VI. PRACTICAL

- Hands on with IoT devices
- Challenge-based programming

Coming soon!!